

Andrzej Pisarski

1

 Sorting

 The Bubble Sort

 The Insertion Sort

 The Polish Flag

 Sorting Objects

 Invariants and Stability

2

 Why we need sorting?
1. Arrange names in alphabetical order,

2. Students by grade,

3. Customers by zip code,

4. House sales by price,

5. Cities in order of increasing population,

6. …

3

1. Compare two adjacent items

2. If necessary swap items

4

1. Compare two players

2. If the one on the left
is taller, swap them

3. Move one position right

(example from R. Lafore book)

5

1. Compare two players

2. If the one on the left
is taller, swap them

3. Move one position right

(example from R. Lafore book) End of first pass

6

 Efficiency of the Bubble Sort
For 10 items we need 9 comparisons on the first pass, 8 on

the second, and so on:

9+8+7+6+5+4+3+2+1 = 45

(N-1) + (N-2) + (N-3) + … + 1 = N*(N-1)/2

N*(N-1)/2 = 45 for N=10

Algorithem makes about (N^2)/2 comparisions.

Big O notations: bubble sort runs in O(N^2) time.

7

 Start baseball players lined up in random order.

 One player need to be „marked”.

 Palyers on the left side of the marked one are partilally
sorted (among themselves).

 Players on the right side of the marked one are unsorted.

 Take the marked player out of line (to make space to
tallest player on the left side (sorted))

 Move tallest sorted player one space right (need to apply
to players taller than marked one).

8

9
(example from R. Lafore book)

10
(example from R. Lafore book)

11
(example from R. Lafore book)

 Efficiency of the Insertion Sort

 How many comaprision an Insertion Sort require?
 Maximum1 comparison on the first pass, maximum 2

on the second, and so on, up to N-1 on the last pass:

1 + 2 + 3 + … +N-1 = N*(N-1)/2

An average comparision is usualy a half of items actually compared

N*(N-1)/4

Big O notations: insertion sort runs in O(N^2) time.

12

 Problem: find algorithm which can be used to sort
random data containing only 0 and 1(we want to get
all 0 on the left and 1 on the right side of the series):

 ?

13

0 1 1 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1 1 1

 Problem: find algorithm which can be used to sort
random data containing only 0 and 1(we want to get
all 0 on the left and 1 on the right side of the series):

14

0 1 1 0 0 0 1 0 1 1

We can use two markers: b and c:

b

c

Array „a”:

Invariant:
elements a[i] for i < b need to be 0 &&
elements a[i] for i > c need to be 1

 Problem: find algorithm which can be used to sort
random data containing only 0 and 1(we want to get
all 0 on the left and 1 on the right side of the series):

15

0 1 1 0 0 0 1 0 1 1

We can use two markers: b and c:

b

c

Array „a”:

Invariant:
elements a[i] for i < b need to be 0 &&
elements a[i] for i > c need to be 1

For b==c array „a” is sorted.

 Why Polish flag?

16

0 0 0 0 0 1 1 1 1 1

 Why Polish flag?

17

0 0 0 0 0 1 1 1 1 1

 Sorting can be applied to the objects not only for a primitive data
type like: double, int, etc.

18

 Sorting can be applied to the objects not only for a primitive data
type like: double, int, etc.

19

 Invariants – „are conditions that remaind unchanged as the algorithm
proceeds” – R. Lafore.

 In bubble Sort algorithm we can find invariant:

 after first loop data N-1 is sorted,

 after second loop data N-2 and N-1 are sorted,

…

 Stability – means that algorithm does not change the order of data
(e.g.: sorted by name and second time by zip code – for the same zip
code should get also data sorted by name. That kind algorithm is stable)

Bubble Sort and Insertion Sort - stable sorting algorithms.

20

21

http://mastalerz.it/algorytmy/

22

Polish flag
procedure sort (n:integer; var a:array);

var x,l,p: integer;

p:=n;

l:=1;

while (l<p) {

 while (a[l]==0) {

 if (l<p) l:=l+1;

 while (a[p]==1) {

 if (l<p) p:=p-1;

 }

 }

 x:=a[p];

 a[p]:=a[l];

 a[l]:=x;

 l:=l+1;

 p:=p-1;

}

