Algorithms and Data Structures

Andrzej Pisarski

Plan of the lecture

- Shell Sort
- Partitioning
- Quicksort
- Binary Trees
 - Tree terminology
 - Basic Binary Tree operations
 - Finding a Node
 - Inserting a Node
 - Traversing the Tree
 - Finding maximum and minimum values
 - Deleting a Node
 - The efficiency of Binary Trees

Shell Sort

A1 A2 A3 A4 A5 A6 A7 A8

Array step= $\{1,2,4\}$; step = 4

Aı A5

A2 A6

A3 A7

A4 A8

Shell Sort

A1 A2 A3 A4 A5 A6 A7 A8

Array step= $\{1,2,4\}$; step = 2

A1 A3 A5 A7

A2 A4 A6 A8

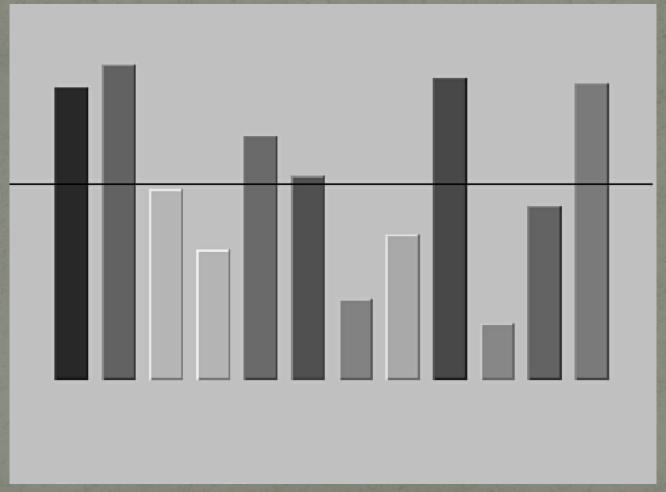
Shell Sort

A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8

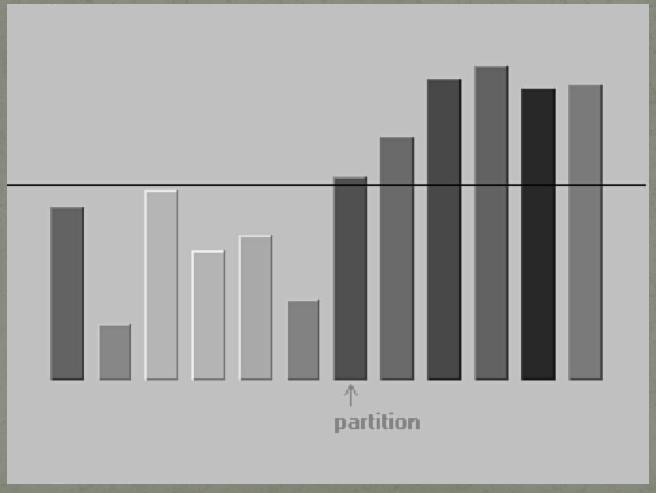
Array step= $\{1,2,4\}$; step = 1

A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8

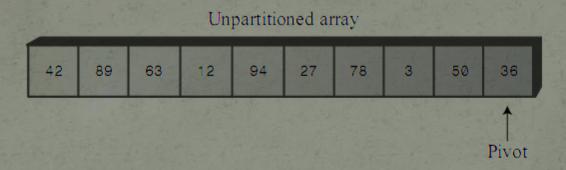
Partitioning

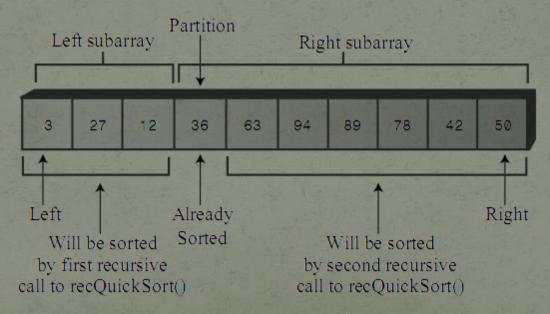


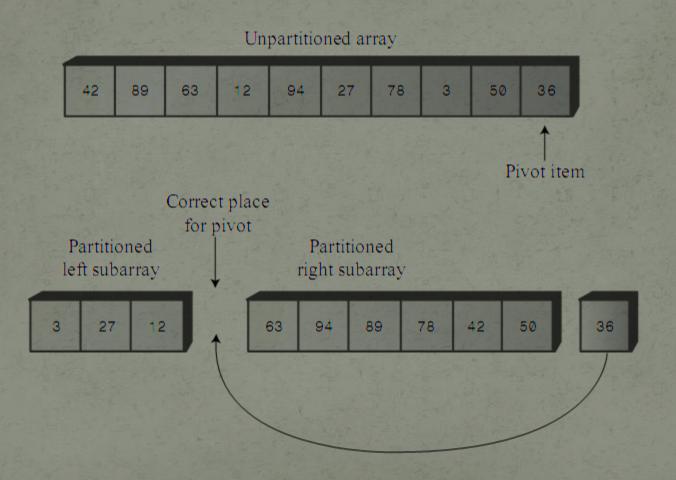
Partitioning

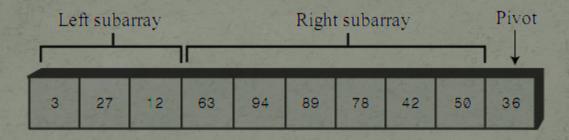


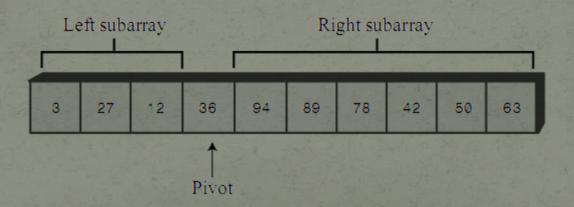
```
void recQuickSort(int left, int right)
if(right-left <= 0) //if size is 1.</pre>
                        // it's already sorted
   return;
                          //size is 2 or larger
else
                                     //partition range
   int partition = partitionIt(left, right);
recQuickSort(left, partition-1); //sort left side
recQuickSort(partition+1, right); //sort right side
```











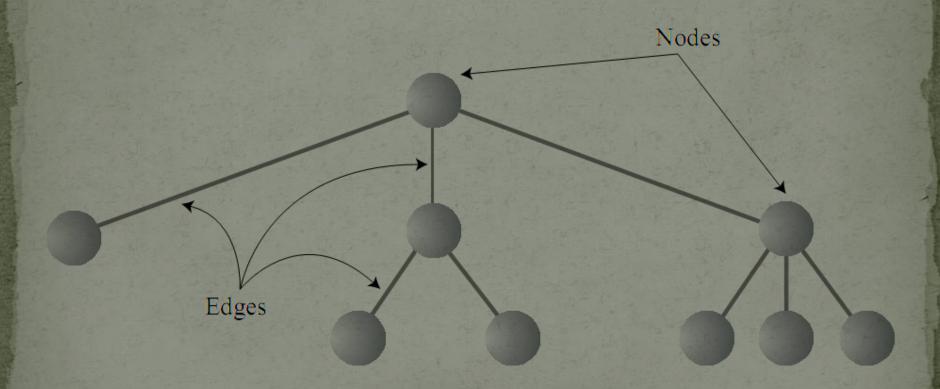
Quicksort: efficiency

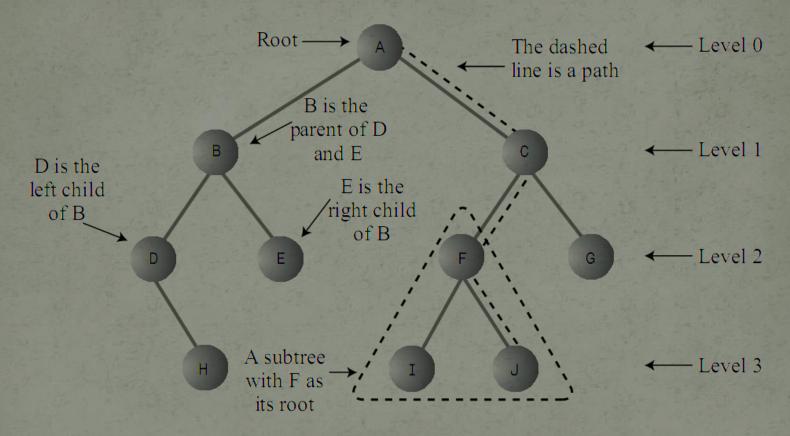
 Quicksort operating in O(N*logN) time (for sorting in memory is the fastest method in majority simulations)

Binary Trees

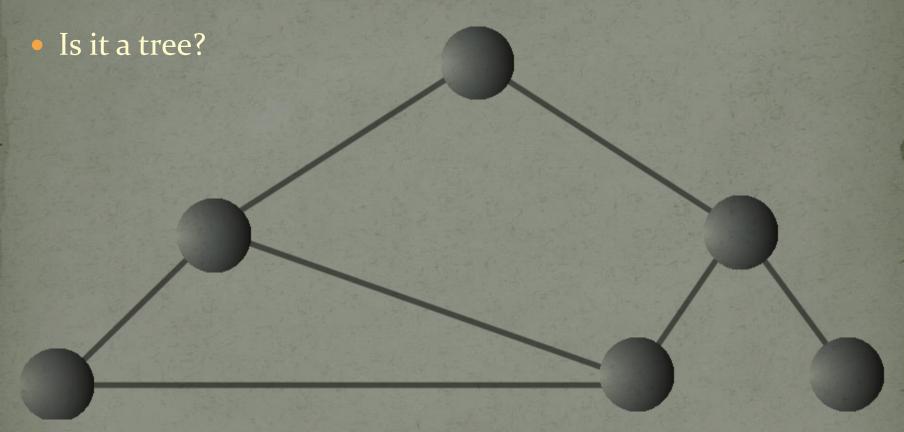
- Path sequence of nodes: walking from node to node along the edges
- Root the node at the top of the tree
- Parent –node above chosen one (except the root)
- Child a node being a "child" of the parent node (conected by line)
- Leaf a node without a children,
- Subtree a node considerate to be a root of sub-tree.
- Visiting action during visiting a node (checking the key value, displaying it, etc.); without action it is merely passing over a node.

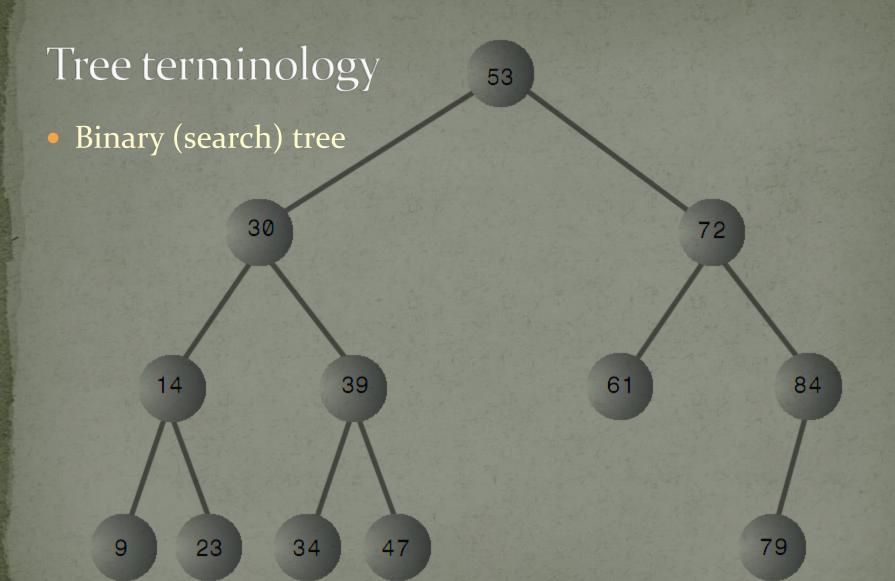
- Traversing to visit all nodes is some order (inorder, preorder, postorder)
- Levels level refers to a number which tell us how many generations of nodes is from the root (to particular node)
- Keys key value(s) stored in the node
- Binary trees a node can have no more than two children



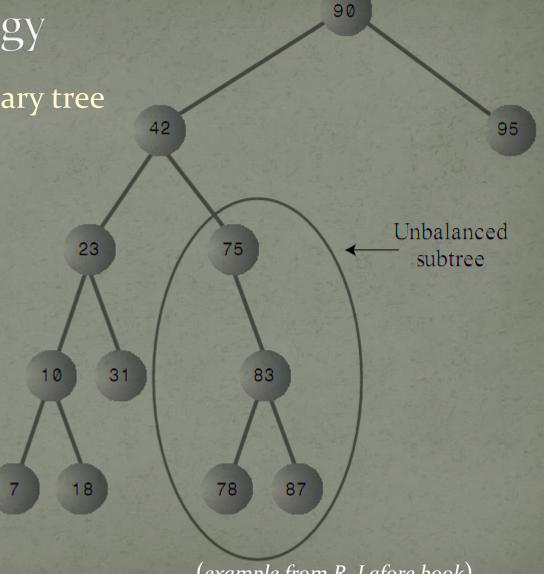


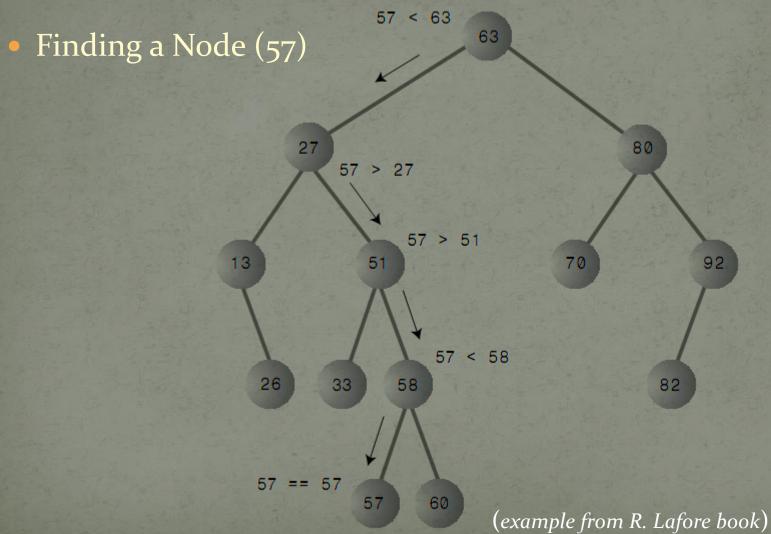
H, E, I, J, and G are leaf nodes





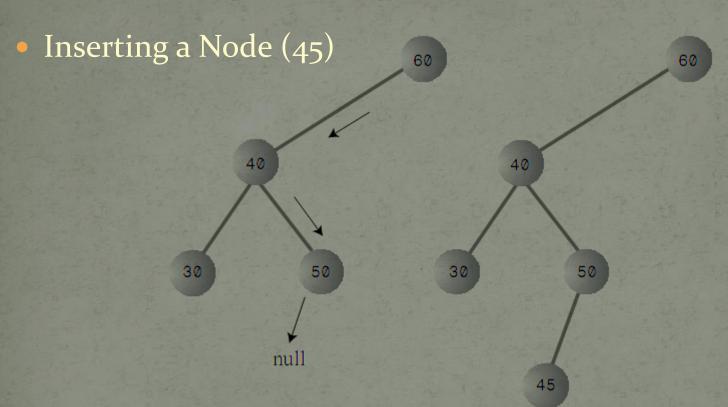
An unbalanced binary tree





• Finding a Node (57)

```
Node* find(int key)
                         //find node with given key
                         //(assumes non-empty tree)
Node* pCurrent = pRoot;
                                //start at root
while(pCurrent->iData != key) //while no match,
   if(key < pCurrent->iData) //go left?
      pCurrent = pCurrent->pLeftChild;
                                   //or go right?
   else
      pCurrent = pCurrent->pRightChild;
   if(pCurrent == NULL)
                                  //if no child,
                                   //didn't find it
      return NULL;
return pCurrent;
                                   //found it
} //end find()
```



a) Before insertion

b) After insertion (example from R. Lafore book)

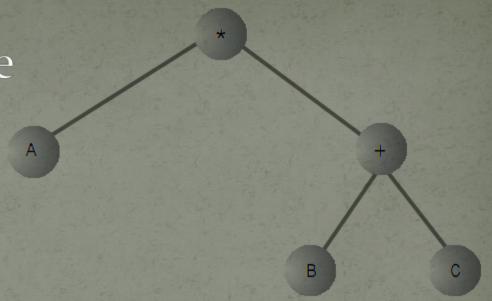
• Inserting a Node (45)

```
void insert(int id, double dd) //insert new node
Node* pNewNode = new Node;
                                    //make new node
pNewNode -> iData = id:
                                     //insert data
pNewNode ->dData = dd:
if(pRoot==NULL)
                                     //no node in root
 pRoot = pNewNode:
else
                                     //root occupied
   Node* pCurrent = pRoot;
                                     //start at root
   Node* pParent;
                                     //(exits internally)
   while(true)
      pParent = pCurrent;
      if(id < pCurrent->iData) //go left?
         pCurrent = pCurrent->pLeftChild;
         if(pCurrent == NULL) //if end of the line,
                                   //insert on left
            pParent->pLeftChild = pNewNode;
            return:
           //end if go left
                                 (example from R. Lafore book)
      else
```

13. Visit 50 50 Traversing the Tree 16. Visit 60 7. Visit 30 30 60 12 • preOrder() postOrder() 10. Visit 40 4. Visit 20 void inOrder(Node* pLocalRoot) if(pLocalRoot != NULL) inOrder(pLocalRoot->pLeftChild); //left child cout << pLocalRoot->iData << " "; //display node inOrder(pLocalRoot->pRightChild); //right child

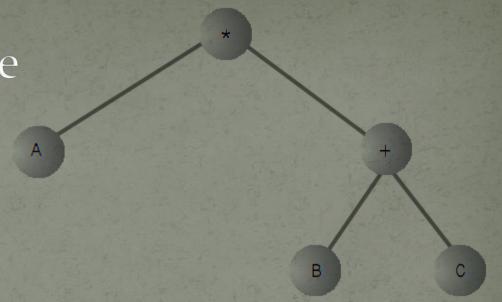
Traversing the Tree

- inOrder()
- preOrder()
- postOrder()



Traversing the Tree

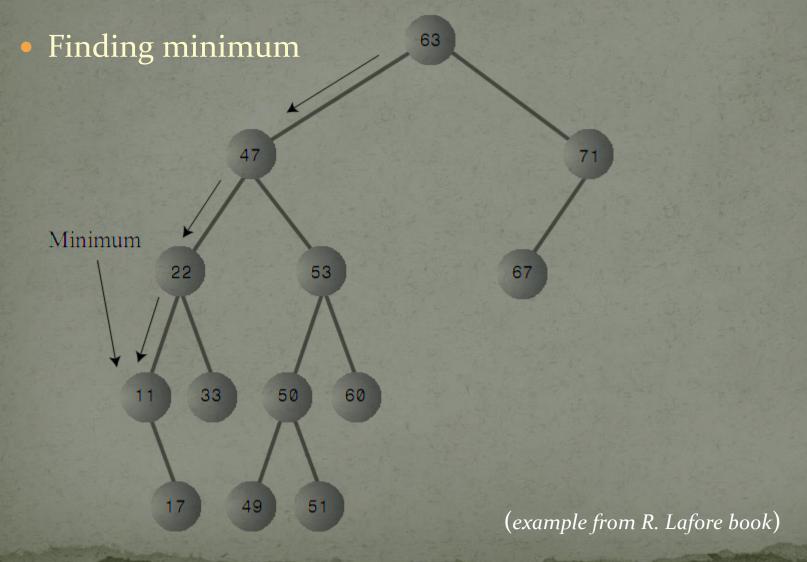
- inOrder()
- preOrder()
- postOrder()



Finding maximum and minimum values

• Finding minimum

Finding maximum and minimum values



The efficiency of Binary Trees

 Operations like finding a particular node involve descending the tree from level 0 to level with search node. How long (many operations) it will take to do this? (for full tree)

The efficiency of Binary Trees

• During a search we need to visit a one node per level.

Number of Nodes	Number of Levels	
1	1	$N=2^L-1$ //+1
3	2	$N+1=2^L$
7	3	$L=log_2(N+1)$
15	4	
31	5	O(log N)
1,023	10	
32,767	15	
1,048,575	20 (example	e from R. Lafore book)