

Introduction - Heap max

‘/ \‘ Father = floor(i/2)
ft child = 2*i
‘/ \ ‘ ‘/ \ ‘]f{ieghi Clhild =2 21*i+1

‘ ‘ All keys of some subtree need to have value not bigger

How to obtain index of:

than root of that subtree (Array[i]<=Array[Father[i]])
o|1|2]|3|[4|5]|6|7|8|9|10|1n

55 | 44 |24 | 21 {32 |19 | 3 | 7 |18

Example of implementations of heap

> Priority queues
* types (max, min)
e insertion (pushing) a new item
* finding an item with max or min key

* deleting (popping)

Heap based on tree

/‘\

‘ ‘ Father = floor(i/2)
Left child = 2*i
I / \ I Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

Pushing a new item (48)

et
.

o|1|2]|3|[4|5]|6|7|8|9|10|1n
55 | 44 |24 | 21 {32 |19 | 3 | 7 | 18 | 48

Heap based on tree

/‘\

‘ ‘ Father = floor(i/2)
Left child = 2*i
/ ‘/ \ ‘ Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

Lo
.

Pushing a new item (48)

o | 1|2 |3 |4]|5) 6
55 | 44 |24 | 21 |48 |19 | 3 | 7 | 18 | 32

10 11

AN
o
\O

Heap based on tree

Pushing a new item (48)

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

1 5 | 6| 7| 8| 9 |10 11
554824214419371832

R 8

Heap based on tree

Father = floor(i/2)

‘ POPiIlg an item (55)

v Left child = 2*i
‘ ‘ : R g Tatherlil]
: : 6 | 7| 8|9 |10 1n

‘ Right Child = 2*i+1
554824214419 3| 7|18 3

Heap based on tree

EN

‘ ‘ Father = floor(i/2)
Left child = 2*i

‘/ \‘ ‘/ \ ‘ Right child = 2*i+1

‘ ‘ (Heap max: Array[i]<=Array[Father([i]])

Poping an item (55)

32 (4824 |21 44|19 |3 |7 |18

Heap based on tree

e
e 06
ES

.

Poping an item (55)

\
0

Father = floor(i/2)
Left child = 2*i
nght child = 2*1+1

(Heap max: Array[i]<=Array[Father([i]])

o

) |

p

3

10

11

48

32

24

21

44

19

g

11

Heap based on tree

‘ POPiIlg an item (55)
‘ Father = floor(i/2)

Left child = 2*i
‘ nght child = 2*1+1

(Heap max: Array[i]<=Array[Father([i]])

48 44 24 21 32 19 3 v 18

12

HeapSO rt 1. Replace root with the last item,
2. Decrease size of heap,

3. Restore a heap structure;

L

‘ ‘ Continue as long
/ \ / \ as size of the heap
‘ ‘ ‘ ‘ is not less than 2

‘ (Heap max: Array[i]<=Array[Father([i]])

14

Heapsort

Replace root with the last item,
Decrease size of heap,
3. Restore a heap structure;

‘ ‘ Continue as long
/ \ / \ as size of the heap
‘ ‘ ‘ ‘ is not less than 2

‘ (Heap max: Array[i]<=Array[Father([i]])

o 10 11

-
N
W
N
vl
(@)
N
oo
\©

HeapSO rt Replace root with the last item,
‘ Decrease size of heap,

/) \ Restore a heap structure;

‘ Continue as long

/ \ as size of the heap

‘ ‘ ‘ is not less than 2

(Heap max: Array[i]<=Array[Father([i]])

/C

o

A o

Heapsort

‘
'\

Replace root with the last item,
Decrease size of heap,

Restore a heap structure;

Continue as long

as size of the heap

‘ is not less than 2

(Heap max: Array[i]<=Array[Father([i]])

N

10

11

17

Heapsort

&

/C

“

1. Replace root with the last item,
2. Decrease size of heap,
3. Restore a heap structure;

Continue as long

as size of the heap

‘ ‘ is not less than 2

(Heap max: Array[i]<=Array[Father([i]])

A\
AN

10

11

18

Heapsort

Replace root with the last item,
Decrease size of heap,
3. Restore a heap structure;

‘ ‘ Continue as long
/ as size of the heap
‘ ‘ is not less than 2

‘ 6 (Heap max: Array|[i]<=Array[Father|[i]])

Heapsort

6&

/“\

Replace root with the last item,

Decrease size of heap,
Restore a heap structure;

Continue as long

as size of the heap

‘ is not less than 2

(Heap max: Array|[i]<=Array[Father|[i]])

N

10

11

44

20

Heapsort

Replace root with the last item,
Decrease size of heap,

/‘\ Restore a heap structure;

‘ ‘ Continue as long
\ / \ as size of the heap

‘ ‘ ‘ is not less than 2

(Heap max: Array|[i]<=Array[Father|[i]])

-

W A pAL

Heapsort

“

48
\
.

\3 Restore a heap structure;

03

1. Replace root with the last item,
2. Decrease size of heap,

Continue as long

as size of the heap

is not less than 2

(Heap max: Array|[i]<=Array[Father|[i]])

N
i

A\
AN

10

11

44

22

Heapsort

Replace root with the last item,
Decrease size of heap,

3. Restore a heap structure;

‘ & (Heap max: Array|[i]<=Array[Father|[i]])

10 11

Continue as long
as size of the heap
is not less than 2

N
vl
(=)
N
oo
\©

P

EXPERINT, ﬂ.ﬁ

Function: makeHeap()

‘ Random pushing of new items
‘ ‘ Father = floor(i/2)
Left child = 2*i

/ ‘/ \ ‘ Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

Lo
ks

o|1|2]|3|[4|5]|6|7|8|9|10|1n

135] PRI ORI 15 = A4 el 205 5| = 21 [96 171 18

=

Function: makeHeap()

‘ Random pushing of new items
‘/ ‘ Father = floor(i/2)
Left child = 2*i

‘/ \‘ Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

et
.

RS s o e L s 6 | 7|1 8| 9 |10| 11

135 PRI G 15 = 10 = 2005 = 21 [165 1751 4

26

Function: makeHeap()

‘ Random pushing of new items

ﬂ(v' .

(Heap max: Array[i]<=Array[Father([i]])

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

13 |14 (19|15 |18 |20]| 21|16 | 17 | 4

27

Function: makeHeap()

‘ Random pushing of new items

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

3|3 |19 |17 |18 |20|21|16 | 15| 4

28

Function: makeHeap()

Random pushing of new items

\

(Heap max: Array[i]<=Array[Father([i]])

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

=

Function: makeHeap()

‘ Random pushing of new items

/\

’03

(Heap max: Array[i]<=Array[Father([i]])

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

3|3 |[21|17 |18 |20|19 |16 | 15 | 4

30

Function: makeHeap()

‘ Random pushing of new items
‘ Father = floor(i/2)

Left child = 2*i
I I Right child = 2*i+1

(Heap max: Array[i]<=Array[Father([i]])

3|3 |[21|17 |18 |20|19 |16 | 15 | 4

31

Function: makeHeap()

‘ Random pushing of new items

‘/ ‘ Father = floor(i/2)
Left child = 2*i

l / I / \ I Right child = 2*i+1

‘ ‘ (Heap max: Array[i]<=Array[Father([i]])

o 1 2 : 6 | 7|1 8| 9 |10| 11

13 7] PIOMININ e 17 = A = 204 = 19 [165 1571 4

32

Function: makeHeap()

‘ Random pushing of new items

‘/ ‘ Father = floor(i/2)
Left child = 2*i

/ \ I / \ I Right child = 2*i+1

‘) (Heap max: Array[i]<=Array[Father([i]])
o 1 2 ; | 6| 7| 8| 9 |10 11

13 |18 (21|17 |4 |20]|19 |16]| 15 | 3

33

Function: makeHeap()

ARandom pushing of new items

‘ Father = floor(i/2)

Left child = 2*1
‘ ‘ ‘ (Heap max: Array[i]<=Array[Father([i]])

Right child = 2*i+1

e

Function: makeHeap()

‘ Random pushing of new items

‘ ‘ ‘ (Heap max: Array[i]<=Array[Father([i]])

21 |18 [13 |17 | 4 |20 19 |16 | 15 | 3

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

35

Function: makeHeap()

‘ Random pushing of new items

Father = floor(i/2)
Left child = 2*i
Right child = 2*i+1

y‘c

(Heap max: Array[i]<=Array[Father([i]])

21 |18 (20|17 | 4 | 13 |19 |16 | 15 | 3

