Units of length and time used in astronomy

UNITS OF TIME

second, symbol: s, also written as a superscript ^s; minute, symbol: min, 1 min = 60 s, also written as a superscript ^m; hour, symbol: h, 1 h = 3 600 s, also written as a superscript ^h; day, symbol: d, 1 d = 24 h = 86 400 s, also written as a superscript ^d.

Example. A sidereal day (equal to the period of the Earth's rotation around its axis): 23 h 56 min 4 s = $23^{h} 56^{m} 04^{s}$.

(Julian) year, symbol: a,

1 a = 365.25 d (exactly), 1 a = 31557600 s \cong 3.156 \times 10⁷ s.

In scientific literature, the year is often marked with the symbol yr.

Units of length (1/2)

The astronomical unit, symbol: au,

1 au = 149597870700 m (exactly).

1 au is approximately the average distance from the Earth to the Sun, $1 \text{ au} \cong 1.496 \times 10^{11} \text{ m}.$

In scientific literature, the astronomical unit is often marked with the symbol AU.

Speed of light in vacuum:

$$c = 299792458 \frac{m}{s}$$
 (exactly).

The light-year, symbol: ly, is the distance light travels in a vacuum in one Julian year:

1 ly = $c \cdot a \cong 9.461 \times 10^{15}$ m.

Central angle α cuts an arc of length *d* from a circle of radius *r*,

 $d = r\alpha$,

when the measure of the angle α is expressed in radians.

The parsec, symbol: pc, is defined as follows:

the distance r = 1 pc when for d = 1 au the angle $\alpha = 1''$, thus

1 pc =
$$\frac{1}{1''}$$
. Because $1'' = \frac{\pi}{648\,000}$ rad,

$$1 \text{ pc} = rac{648\,000}{\pi}$$
 au (exactly); $1 \text{ pc} \cong 3.086 imes 10^{16}$ m.

Proxima Centauri, the star closest to the Sun, is 4.2 ly \cong 1.3 pc from the Sun.

Conversions between length units: 1 ly $\approx 6.324 \times 10^4$ au $\approx 3.066 \times 10^{-1}$ pc, 1 pc $\approx 2.063 \times 10^5$ au ≈ 3.262 ly.

Measures of plane angles

One can express measures of plane angles using a usual degree measure, in which

 ${\rm full \ angle} = 360^\circ, \quad 1^\circ = 60', \quad 1' = 60'',$

or using a time measure, in which

$$\begin{array}{l} 360^\circ = 24^h \implies 1^h = 15^\circ,\\ 1^h = 60^m \implies 1^m = 15',\\ 1^m = 60^s \implies 1^s = 15''. \end{array}$$